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Abstract

Much politico-economic research on individuals’ preferences is cross-sectional and does
not model dynamic aspects of preference or attitude formation. I present a Bayesian dynamic
panel model, which facilitates analysis of repeated preferences using individual-level panel
data. My model deals with three problems. First, I explicitly include feedback from previous
preferences taking into account that available survey measures of preferences are categorical.
Second, I model individuals’ initial conditions when entering the panel as resulting from
observed and unobserved individual attributes. _ird, I capture unobserved individual prefer-
ence heterogeneity, both via standard parametric random eòects, and via a robust alternative
based on Bayesian nonparametric density estimation. I use this model to analyze the impact of
income and wealth on preferences for government intervention using the British Household
Panel Study from 1991–2007.

1I am indebted to JeòGill,Michael Malecki,Michael Becher, Tom Snijders, Simon Jackman,_omas Gschwend,
Vera Troeger, Adam Ziegfeld, JeroenVermunt,Martyn Plummer, aswell conference and seminar participants
in Chicago, Berlin, Cologne, Oxford, and Tilburg for helpful comments and criticisms. Equal thanks is due
to my reviewers and the editors. Furthermore, I thank the Oxford Supercomputing Centre for resources and
support.



1. INTRODUCTION

Individuals’ political and economic preferences typically exhibit patterns of both stability and
change (e.g. Wlezien 1995). On the one hand, preferences are o�en very highly correlated
over time. But, on the other hand, preferences can change in response to external events, such
as income shocks, becoming unemployed, or experiencing an economic crisis. To capture
the dynamics of preferences – their stability and their change – an appropriate modeling
strategy involves the use of individual-level panel data and dynamic panel models, in which
past preferences in�uence current preferences via a ûrst-order Markov process. Panel data are
increasingly being used in political science, both in the form of long-term household panels,
such as the British Household Panel Survey, and election panels, such as the Cooperative
Campaign Analysis Project. Linear dynamic panel models are also well known in political
science (for an introduction seeWawro 2002 in this journal). However, the application of
thesemodels to modeling dynamic preferences is not straightforward.

_ree central issues arise when modeling preference dynamics: categorical preference
measures, endogenous initial observations, and individual heterogeneity. First, although
political scientists conceive of preferences as continuous, available survey data on preferences
is usually ordered-categorical, o�en using rather coarse categories. _e nonlinear nature of
preferencemeasures prohibits direct application of established linear dynamic panel models
(e.g. Arellano and Bond 1991; Blundell and Bond 1998) and instead requires a dynamicmodel
for categorical data for both the dependent variable and the feedback process. Second, because
initial conditions – an individuals’ preference stateswhen entering the panel – are endogenous
to the preference formation process under study, one should explicitlymodel initial conditions
in nonlinear panel models (Heckman 1981b;Nerlove et al. 2008). _ird, unobserved individual
heterogeneity must also bemodeled explicitly in order to capture unobserved or unmeasured
eòects of individual characteristics such asmotivation or ability. Whenmodeling heterogeneity
via Gaussian random eòects – as is standard in virtually all hierarchical models in political
science – inferences can be sensitive to this speciûc distributional assumption and should
be checked using a more �exible model speciûcation.2 Standard ûxed eòects estimation
strategies are unavailable due to the presence of a lagged dependent (endogenous) variable in
the nonlinear model (see, e.g. Nickell 1981; Heckman 1981b; Arellano and Carrasco 2003).

I present a Bayesian robust latent dynamic ordered probitmodel,which tackles these three
problems. First, it captures the categorical nature of survey-based preferencemeasures by using

2Dynamic panel models for ordinal data are not widely developed in political science. _eoretical work and
applications exist in biostatistics,medicine, and ûnance (e.g. Lunn et al. 2001; Hasegawa 2009; Varin and
Czado 2010; Czado et al. 2011; Müller and Czado 2005), but are developed with long time-series in mind, and
are not concerned with initial conditions in short panels of individuals (note that the start ofmedical studies
o�en does coincide with the start of the data generating process). Pang (2010) presents amodel for repeated
categorical data using correlated residuals. However, extending themodel to include dynamic feedback is not
straightforward due to the special status of initial conditions (cf. appendix A). Pudney (2006, 2008) presents
amodel for dynamic ordinal data using Gaussian random eòects in amaximum likelihood framework.
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an ordered probit speciûcation, in which a continuous latent preference variable generates
observed survey responses. Most existing categorical dynamic panel models specify the lagged
dependent variable as categorical, which implies the unrealistic assumption that current
continuous preferences are in�uenced by past categorical survey responses. In contrast, I specify
feedback from previous preferences to current ones as also arising from latent preferences, thus
appropriatelydistinguishing between continuous concept and categorical survey items. Second,
I model initial conditions using a simultaneous equation speciûcation, in which individuals’
initial observations depend on observed covariates, background information, such as parents’
education, and unobserved individual speciûc eòects. _ird, I present robust speciûcations
for the distribution of unobserved heterogeneity. I specify hierarchical or multilevel models
with both Gaussian and t-distributed random eòects. To relax these parametric assumptions, I
employBayesiannonparametric density estimation for�exible estimation of the random eòects
distribution usingDirichlet process priors (for recent applications of Bayesian nonparametrics
in political science see Imai et al. 2008; Gill and Casella 2009; Grimmer 2010; Spirling and
Quinn 2010).

_e paper proceeds as follows. In the next section I set up the hierarchical latent dynamic
panel model, discuss my treatment of initial conditions, the speciûcation of priors, and pos-
siblemodel extensions. Next, I present robust random eòects speciûcations using Dirichlet
process priors. I illustrate themodel by an example from the political economy of redistri-
bution preferences – where studies are usually cross-sectional and ignore both unobserved
heterogeneity and dynamics. I analyze the impact of income and wealth on preferences for
government intervention using the British Household Panel Study from 1991–2007, which
repeatedly measures individual preferences for nearly 2000 individuals. I discuss results
arising from themodel speciûcation using standard Gaussian random eòects and illustrate
how to conduct robustness tests using the �exible Dirichlet process random eòects model.
_e last section concludes the paper.

2. LATENT DYNAMICMODEL

A dynamic analysis of individual behavior or preferences has three features not present in
cross-sectional studies. First, individual preferences show a certain degree of persistence.
While cross-sectional studies provide a snapshot of individuals in time,modeling the dynamics
of preferences using panel data provides an explicit model of how preferences change over
time (Bartels 1999). A straightforward theoretical speciûcation posits that preferences are
persistent, which creates correlated observations within the same individual. In other words,
“[...] preferences remain unchanged unless something happens to change them [...]” (Wlezien
1995: 989). _us a dynamic model of preferences should include a persistence parameter
capturing this correlation.

Second, some individual characteristics, such as intelligence or motivation, can have
a strong in�uence on preferences or attitudes, but are unobserved or unobservable to the
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researcher. _is individual heterogeneity is captured via individual constants, which I specify
as random eòects (I discuss robustness of distributional assumptions in section 3). It is well
known that if heterogeneity is present in the true data generating process but ignored in the es-
timatedmodel, the degree of preference persistencewill be overestimated (seeHeckman 1981a).
Conversely, ignoring persistence leads researchers to overstate the extent of heterogeneity.
_us, a completely speciûedmodel of dynamic preferences has to include both components.3

_ird, a sample of individuals, be it cross-sectional or a panel, provides only a time-
limited observation window. Individuals started forming their beliefs and preferences a
long time before one starts observing them. _e fact that individuals do not enter a study
with an ‘emptymind’, i.e. the problem of initial conditions, has to be included in themodel.
_ose three features are important, when interpreting the eòect of shocks (such as becoming
unemployed) on preferences. Estimating the eòect of such shocks from cross-sectional data,
ignoring preference persistence as well as individual heterogeneity,might lead to erroneous
conclusions.

2.1. Modeling dynamics

Concepts like preferences and attitudes are not inherently discrete. _e fact that oneworkswith
categorical variables is usually simply due to methodological limitations in data collection and
measurement (McKelvey and Zavoina 1975). Consequently, preferences should be speciûed
as a latent variable zt which represents the underlying continuous concept that generates
observed categorical scores yt (e.g. Greene and Hensher 2010). Since from the conceptual
perspective of preferences there is no reason to expect that current continuous preferences
depend on past preference categories, we also need the latent variable to appear on the right
hand side of our dynamic panel model (Heckman 1978; Müller and Czado 2005; Pudney 2008).
In other words, feedback from past preferences to current ones, should be speciûed as arising
from zt−1 not yt−1.4

_us, following Albert and Chib (1993), I model observed responses in category c (c =
1, . . . ,C) of observed variable yit (i = 1, . . . ,N ; t = 0, . . . , T) as being generated by an underly-
ing continuous latent variable zit and a vector of threshold parameters τ such that

yit = c if zit ∈ (τc−1, τc]. (1)

3_e importance of distinguishing persistence (or state dependence) and heterogeneity has beenwell established
in economics (e.g. Heckman 1981a; Keane 1997; Vella and Verbeek 1998; Arulampalam 2000). For recent
discussions of its relevance to political science, seeWawro (2002) and Bartels et al. (2011).

4One ofmy reviewers rightly pointed out that other mechanisms could introduce dependence on past prefer-
ences, for examplewhen individuals ‘adapt’ to repeatedly presented categories. If the objective of an analysis is
to study these survey-method eòects, themodel can be extended, for example by including dummy response
categories in addition to the latent variable (seeHeckman 1978 for a detailed discussion of continuous and
categorical lagged dependent variables).
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To capture the ordinal nature of observed preference scores, threshold parameters are con-
strained to bemonotonically increasing,

−∞ = τ0 < τ1 = 0 < τ2 < ⋅ ⋅ ⋅ < τC−1 < τC =∞; (2)

and τ1 = 0 to identify themodel (assuming that an overall constant will be included in the
model; see Albert and Chib 1993; Johnson and Albert 1999).

Now, the dynamicmodel for latent preferences zit can be written as:

zit = ϕzit−1 + β′xit + ξi + єit , t = 1, . . . , T (3)

where ϕ captures the degree of preference persistence, i.e. the extent to which current pref-
erences depend on previous ones. β is a vector of regression parameters for matrix xit of
possibly time-varying covariates and an overall constant. Errors are decomposed into an
individual-speciûc time constant random eòect ξi and stochastic disturbances єit , which vary
over individuals and survey waves. For identiûcation, the variance of the stochastic errors,
distributed єit ∼ N(0, σ 2

є ) has to be ûxed. I set σ 2
є = 1, yielding an ordered probit speciûcation.5

Unobserved individual heterogeneity is modeled via random eòects, which are drawn
from a normal distribution centered at zero with estimated variance σ 2

ξ :

ξi ∼ N(0, σ 2
ξ). (4)

_emodel can be seen as amultilevel or hierarchical model, with responses nested within
individuals. _e presence of random eòects induces correlations between responses of the
same individual over time (Rabe-Hesketh and Skrondal 2008).6 _e proportion of total
variance that is due to individual random eòects, a�er accounting for preference persistence,
can be estimated by

ρ =
σ 2
ξ

(1 + σ 2
ξ)

. (5)

_is provides a useful indicator of the relevance of unobserved individual diòerences, ignored
in cross sectional analyses.

5As usual, errors are assumed independent, Cov(є i s , є i t) = 0∀s ≠ t, and uncorrelated with covariates,
Cov(є i t , x i t) = 0.

6I employ standard assumptions of normal random eòects, i.e. they are assumed to be independent of stochastic
errors: Cov(ξ i , є i t) = 0, and independent of x i t : Cov(ξ i , x i t) = 0. _e latter assumption is principally
unveriûable. _us Pudney (2008) suggests to regard this as a normalization and interpret eòects of covariates
x∗i (those covariates in x i t which are time-constant) as combination of the true eòect of x∗i and the part of
the random eòect ξ i that can be proxied by a linear function of x∗i . _e estimated random eòects variance
σ 2
ξ is then interpreted as variation not predicted by x∗i . Alternatively, themodel might be extended to allow
for correlated random eòects (Mundlak 1978; Wooldridge 2002).
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2.2. Modeling initial observations

_e previous discussion indicates that one generally assumes preference or attitude formation
to be a continuous ongoing process. However, panel data provide only a limited window into
this process. Clearly, the ûrst panel observation of an individual does not coincide with the
ûrst time he or she has ever formed a preference. To the contrary,most researchers would
argue that individuals start forming preferences at a very young age, and are in�uenced by
parental characteristics, such as education, and by both observed and unobserved individ-
ual characteristics.7 _us, modeling initial observations has special relevance in a (short)
dynamic panel model, as one’s “assumption about the initial observations plays a crucial role
in interpreting themodel” (Anderson andHsiao 1981: 598).8

Nerlove et al. (2008: 11-12) argue that initial observations should bemodeled by a speciû-
cation similar to the one aòecting the remaining observations – i.e., as depending on observed
individual characteristics in xi , while possibly including additional background variables vi ,
such as parental education or the region of upbringing. Furthermore, to capture the depen-
dence of the initial observation on unobserved individual characteristics, one should specify
an arbitrary correlation with the individual speciûc eòect ξi (Nerlove et al. 2008; Harris et al.
2008). In specifying an explicit model for endogenous initial observations, I follow Heckman
(1981a, b), who speciûes an approximation for the ûst (latent) observation zi0∣xit , ξi as:

zi0 = δ′wi + λξi + єi0 (6)

where wi = (xi0, vi) is a vector of initial observation covariates comprised of an individual’s
covariate values at sample entry xi0 and additional background information vi . As noted
above, initial observations are already shaped by unobserved individual characteristics, which
Heckman’s speciûcation captures by including the individual speciûc eòect ξi with a scale
factor λ that allows for a diòerent eòect magnitude of unobserved characteristics on initial
preferences.9 Finally, єi0 is a random disturbance term at the initial condition assumed
uncorrelated with other errors, i.e. Cov(єi0, єit) = 0, ∀t > 0. Monte Carlo evidence indicates

7Models which ignore this problem and specify initial conditions as exogenous can lead to severely biased
estimates of themost central parameters of a dynamic panel model, namely individual random eòects and
preference persistence (e.g. Heckman 1981b; Fotouhi 2005; Arulampalam and Stewart 2009).

8AsAnderson andHsiao (1981: 598) note, this is a problem speciûc the short dynamic panels (such as household
or election panels), since on cannot credible assume that T →∞.

9It facilitates a simple speciûcation test of the appropriateness of assuming independence of initial conditions
and unobserved individual eòects: this assumption is rejected if λ ≠ 0. _is parametrization is sometimes
called a factor-analytic formulation of random eòects (e.g Skrondal and Rabe-Hesketh 2004). Alternatively,
one could introduce a second set of random eòects with ûxed variance in (6), and estimate the covariance
between them and those in equation (3). _e present formulation is somewhat more intuitive and allows for
amore straightforward test of exogeneity by testing the parameter λ instead of a covariance.
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that this approximationworkswell in short panels (Heckman 1981a;Akay 2011).10 A somewhat
more detailed discussion can be found in [online] appendix A.

Jointly estimating (1) – (4) and (6) yields amodel that deals with four of the ûve central
problems outlined in the introduction. _e dynamic model is supposed to capture serial
correlation of responses given at diòerent points in time by the same individual (e.g. Beck and
Katz 1996). An estimate of this correlation is given by ρ deûned in equation (5). To test for
remaining autocorrelation, latent residuals (Albert and Chib 1995) can be used. I calculate
remaining residual correlation as:

r̂ = ∑
N
i=1∑T

t=2 µitµit−1

∑N
i=1∑T

t=2 µ2
it

(7)

where µit stands for the linear predictor used in (3). If the speciûcation succeeds in modeling
individuals’ correlated responses over time, r̂ should be close to zero.

2.3. Prior speciûcations

Model speciûcation is completed by assigning (hyper-) priors to all parameters.11 Priors for
intercept and parameters of individual characteristics, in both dynamics and initial condition
equations are diòuse with mean zero and large variance to yield regression-type estimates:

β, δ ∼ N(0, 100). (8)

I use a normal distributed prior for ϕ, the parameter capturing persistence of preferences.
I set a prior mean of 0.5 indicating an a priori expectation that persistence is not zero, but use
a very large variance to yield a diòuse prior:

ϕ ∼ N(0.5, 100). (9)

More informative priors might be preferable in some applications, e.g. by restricting ϕ using
an uniform prior on U(−1, 1, ).

My hyperprior for the variance of individual random eòects is uniform on the standard

10Alternative approximations, such asWooldridge (2005),would specify the distribution of ξ i ∣y i0 , x i t , i.e. simply
include the ûrst panel observation among the regressors. _is approximation is computationally easier to
implement than Heckman’s solution, which explains its predominance in applied research. However, if
one speciûes preferences as latent constructs, the variable one would need for conditioning on (z i0) is not
observable (Pudney 2006: 8). As another disadvantage, this approximation usually works less well in short
panels (Akay 2011).

11Note that, as in every Bayesian analysis, sensitivity analyses for values of the hyperparameters should be
carried out. For an overview of robustness check strategies see Gill (2008a: 199f.). Basic regression-type
priors can be checked by using diòerent variances, For more speciûc or complex priors, I describe sensitivity
check strategies in the text.
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deviation, bounded between zero and 10. Gelman (2006) recommends this prior over the
more commonly used inverse Gamma speciûcation (Spiegelhalter et al. 1997).

√
σ 2
ξ ∼ U(0, 10). (10)

However, this prior has the disadvantage of assigning equal probability to unrealistically large
random eòect variances. While this can be seen as representing very little a-priori knowledge,
some researchers might prefer amore informed speciûcation using inverse gamma priors

σ−2
ξ ∼ Γ(a0, b0) (11)

with values for a0 and b0 chosen using knowledge or expectations of the variation of the
individual speciûc eòects. I provide examples of such an analysis in [online] appendix D.

An uninformative prior for the random eòect scale-factor in the initial condition equation
(6) is a normal distribution centered at zero and with large variance:

λ ∼ N(0, 100). (12)

To ensure that thresholds follow themonotonicity constraint given in (2), I specify thresh-
olds recursively ensuring that each subsequent threshold is larger than the previous one by
adding a positive value υτ. _is is achieved by drawing υτ from a distribution with positive
support such as an exponential distribution (cf. Jackman 2009).12 _e ûrst threshold is nor-
malized to zero for identiûcation; in amodel without overall intercept it can be drawn from a
normal distribution centered at zero with large variance.

τ1 = 0 (13)
τc = τc−1 + υτ , c = 2, . . . ,C − 1 (14)
υτ ∼ Exp(1). (15)

2.4. Model extensions

Given its hierarchical nature, themodel can be extended straightforwardly to capture higher
order nesting by adding random eòects for the relevant grouping factor. For example, individ-
uals nested within families (e.g.Winkelmann 2005) or regions j ( j = 1, . . . , J) can bemodeled
by extending (3) to

zi jt = ϕzi jt−1 + β′xi jt + ξi + ψ j + єi jt

12Here I use an exponential distribution with rate one, but other parametrization are possible depending on
one’s a priori expected distance between thresholds. My speciûcation expects a distance of one, which is
close to the diòerence observed in a simple ordered probit regression. An alternative strategy for an ordering
constraint is to order thresholds at each step of theMCMC sampler.
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where ξi is the individual speciûc eòect, and ψ j represents the regional random eòect. Initial
conditions are still modeled via (6). _is is now a three level model with responses nested in
individuals nested in regions. Region random eòects are distributed ψ j ∼ N(0, σ 2

ψ) with an
appropriate hyperprior such as σψ ∼ U(0, c).

3. ROBUST RANDOM EFFECTS

_e discussion in the previous section assumed normally distributed random eòects. _is
assumption goes almost unnoticed as it is standard in the vast majority of random eòects
or ‘multilevel’ models in the social sciences. However, assumptions about the distribution
of individual random eòects ξi are not innocuous and can have important substantive impli-
cations for panel data analysis.13 When using a normal distribution as random eòects prior,
the well-known shrinkage property of hierarchical models (Gill 2008a: 183; Robert 2007:
ch.10) pulls individuals with extreme ξi values towards one common mean. Multi-modality or
interesting patterns of random eòects might be obscured. Checks of the normality assumption
can not be carried out using the already shrunken residuals (Kyung et al. 2010).

In this section I describe two strategies for amore robust estimation of individual het-
erogeneity: (1) accommodating more extreme individual random eòects by specifying a
distribution with heavier tails, such as a t-distribution with small degrees of freedom (Lange
et al. 1989); (2) estimating the random eòects distribution nonparametrically using Dirichlet
process priors (e.g. Gill and Casella 2009).

3.1. t-distributed random eòects

As an alternative to the normal distribution, a t distribution can be used as robust prior
for random eòects. A t distribution with small degrees of freedom has heavier tails and
accommodates more extreme random eòect values (cf. Lange et al. 1989; Gelman et al. 2004:
ch.17). _us, changing the distributional speciûcation in (4) to

ξi ∼ t(0, σ 2
ξ , df) (16)

yields amodel with t-distributed random eòects. However, estimating the degrees of freedom
from the data – e.g. by assigning a uniform prior – is o�en rather diõcult. For my goal of
checking the robustness of the normal random eòects assumption, choosing a small value,
such as 4 degrees of freedom, is more appropriate (Gelman et al. 2004: 446).

13For a similar argument in the context ofmarketing models see Rossi et al. (2005: ch. 5); see Navarro et al.
(2006) for experimental psychology.
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3.2. Dirichlet process random eòects

Amore �exible alternative to assuming normally distributed random eòects consists in estimat-
ing the random eòects distribution non- or semi-parametrically. In the simpler linear dynamic
panel case, a ûxed eòects approach can be employed without distributional assumptions –
however this is unavailable for the current model (e.g. Nickell 1981; Heckman 1981b). _us,
when random eòects have to be used, Arellano and Carrasco (2003) argue that (p. 126) “a
semi-parametric random eòects speciûcation may represent a useful compromise” between
the two.

In a frequentist framework, nonparametric estimation can be accomplished by using ûnite
mixtures of normals or by approximating the random eòects distribution by a ûnite number
ofmass points (e.g. Heckman and Singer 1984; Lindsay 1995;Aitkin 1999; Eckstein andWolpin
1999; Vermunt 2004). When applied to substantive research questions, a central problem
consists in how to choose the number ofmixtures or mass points (Laird 1978; Follmann and
Lambert 1989; Vermunt et al. 2008; Skrondal and Rabe-Hesketh 2004: 181f.).

In a fully Bayesian analysis, instead of assuming a distribution G for the random eòects,
one can place a Dirichlet process prior (Ferguson 1973, 1974) on G itself to indicate uncertainty
about its shape (e.g. Kleinman and Ibrahim 1998; Gill and Casella 2009):

ξi ∼ G (17)
G ∼ DP(α,G0) (18)

A Dirichlet process is characterized by two components. _e base distribution G0 is the
expectation of G – the distribution one would have used in a non-DP model (Escobar 1995:
98). In my current application this is the zero-centered normal distribution with estimated
variance. _e precision or dispersion parameter α determines the dispersion of the prior
for G over its mean G0 (Müller and Quintana 2004). _us, using a Dirichlet process prior,
each set of individual random eòects {ξ1, . . . , ξN} drawn from G lies in a set of K distinct
values or ‘subclusters’ (with K ≤ N) sampled from G0: {ζ1, . . . , ζK}.14 For each number of
realized subclusters at any particular step of an MCMC sampler, random eòects ξi are drawn
from the set {ζ1, . . . , ζK} viamultinomial sampling. Deûne subcluster membership indicators
S = {s1, . . . , sN} which are si = k if ξi = ζk; and mk = #{si = k} as the number of random
eòects which share the same value ζk (i.e. they belong to the same subcluster k).15

To illustrate the working of the Dirichlet process, I describe the assignment of ran-
dom eòect ξi of a particular individual to a subcluster k, conditional on all remaining ran-

14_e term “subcluster” is used to indicate that clustering is done nonparametrically and not based on substantive
criteria (cf. Kyung et al. 2010)

15_us, using a Dirichlet process prior provides discrete realizations from the inûnite space of prior distributions
with probability one (Ghosh andRamamoorthi 2003;Müller andQuintana 2004). Amore detailed discussion
can be found in [online] appendix B.
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dom eòects ξ[i] = {ξ1, . . . , ξi−1, ξi+1, . . . , ξN} being already assigned. Denote by S[i] the spe-
ciûc conûguration of N − 1 random eòects into K[i] subclusters existing at this point, with
m[i],k = #{si = k, k ≠ i} giving the number of individuals sharing a common value ζ[i],k . _e
conditional prior for ξi is (seeHanson et al. 2005 or Dunson et al. 2007 for details):

[ξi ∣ξ[i],K[i], S[i], α] ∼
α

α + N − 1
G0 +

1
α + N − 1∑k≠i

δ(ξk) (19)

∼ α
α + N − 1

G0 +
1

α + N − 1

K[i]

∑
k=1

m[i],kδ(ζ[i],k) (20)

where δ(⋅) now represents the Dirac delta function yielding a single value at its argument.
In other words, ξi forms a new subcluster with probability α/α + N − 1, in which case it is
drawn from G0. Else, it gets value ζ[i],k of an existing subcluster with multinomial probability
according to N[i],k/α + N − 1. If one imagines a stream of individual random eòects to
be assigned, this leads to a preferential attachment clustering structure: as the number of
individuals grows, the probability that a new individual is assigned to an already existing
subcluster is proportional to the subcluster’s size. _e probability that a new individual forms
a new subcluster of the Dirichlet Process is proportional to α, and if that happens, values for
ξi are generated according to the base distribution G0 (Müller et al. 2007).

_e realized numbers of subclusters K is stochastic and is governed by α, which can be
itself estimated from the data (see below). _e role of α can be visualized by inspecting its
relationship with the expected number of subclusters (Hanson et al. 2005), which can be
approximated as (Antoniak 1974; Escobar 1995):

E(k∣α, n) ≈ α log[(α + N)/α]. (21)

Figure 1 plots the expected number of subclusters as a function of the number of individuals
for diòerent values of α. _is nicely illustrates the logarithmic nature of the preferential
attachment property of the Dirichlet process and conforms to intuitions about the relationship
between the number of diòerent subclusters and the number of individuals: As more and
more individuals are observed, the chance of observing new and unexpected random eòect
values increases, but at a decreasing rate.

In the dynamic panel model with random eòects, considered here, the set of parameters
in the base distribution is simply G0 = {p(σ 2

ξ)} with a uniform hyperprior σξ ∼ U(0, 10) as
before. _us themarginal distribution – averaging over all possible G – yields amixture of
normal distributions with the number of subclusters K randomly varying between 1 and N
(see Kleinman and Ibrahim 1998 for a similar setup).16 _e individual speciûc random eòect
variance parameters are either selected from the K[i] existing values ζk = σ 2

ξ,k drawn from G0,

16In practical implementations using a Truncated Dirichlet process, the number of subclusters is restricted to
some truncation value T ≪ N . See appendix B for details.
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Figure 1: Expected number of subclusters as function of sample size and Dirichlet process
precision parameter α

or created via a fresh draw from G0. Amore detailed technical discussion of the Dirichlet
process and its implementation is available in [online] appendix B.

Estimating dispersion parameter α from the data

_e dispersion parameter, α, is a central parameter of themodel. Higher values of α increase
not only the number of expected subclusters, but also the ratewithwhich new ones are created
by the Dirichlet Process. Given the absence of clear prior expectations about values of α, its
value can be determined by the data yielding amixture of Dirichlet processes (Antoniak 1974).
In a fully Bayesian context this is achieved by assigning it a hyperprior:

α ∼ Γ(a0, b0). (22)

_e gamma distribution is a common choice for this problem (Escobar andWest 1998; Jara
et al. 2007), however its parameters do not allow for an intuitive prediction of its eòect on the
model.17 Kottas et al. (2005) provide an approximation to the relationship between Γ-prior
parameters and expectation and variance of the number of subclusters K, which can be used
to choose semi-informed prior values (for more details see appendix C). I select parameters
for the gamma hyperprior so that they yield 8 a priori expected clusters with a standard
deviation of 4, which yields parameters a0 = 5.16 and b0 = 4.54 for the gamma prior. To

17Specifying an essentially �at prior for computational reasons is common in political science applications
(Jackman 2000; but see Jackman andWestern 1994), but is of somewhat questionable value here. Even
medium-sized values of α lead to a large number of clusters, which in the limiting case creates one cluster
per individual – essentially defying the purpose of the hierarchical setup. _erefore, I argue to use a semi-
informed prior speciûcation (Gill and Casella 2009: 3) for the DP precision parameter. Kyung et al. (2010)
provide alternative strategies of sampling the concentration parameter.
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check the sensitivity of this speciûcation, I also used values which lead to a prior expectation
of half the number of clusters (a0 = 0.921 and b0 = 1.435). In an alternative strategy (and
robustness test), one can forgo estimation of α and instead ûx it to a set of pre-speciûed values,
e.g. α = {0.5, 1, 2, 10}, in order to determine the robustness of one’s estimates to increasingly
larger numbers of random eòects subclusters. _e approximations given in equation (21) and
Figure 1 can serve as guidelines relating values of α to expected subclustering and one’s sample
size.

4. APPLICATION: DYNAMIC PREFERENCES FOR REDISTRIBUTION

A recent wave of research in (comparative) political economy has augmented macro-level
studies of redistribution by concentrating on individual-level factors in�uencing redistribu-
tion preferences (see, among many,Moene andWallerstein 2001; Iversen and Soskice 2001;
Alesina and La Ferrara 2005; Alesina and Angeletos 2005; Cusack et al. 2005; Scheve and
Stasavage 2006; Shayo 2009; Rehm 2011; Rehm et al. 2012). Studies examining preferences for
redistribution and government intervention in the economy are usually cross-sectional and
ignore dynamic aspects of preference formation.18 As a consequence, estimates of key variables,
such as the eòect of job loss (as in Cusack et al. 2008) might be in�uenced by unobserved
factors, such as ability andmotivation, as well as by persistent preferences.19

In this section, I present a short study of the dynamics of individual redistribution pref-
erences, by applying the model outlined before to repeated measurements of individuals’
preferred level of government intervention. More speciûcally, I examine individual responses
to the question if government has the obligation to provide jobs. _is survey item correlates
highly with other widely usedmeasure of general redistribution preferences.20 I examine the
eòects of income and wealth and of ‘socio-economic shocks’ such as becoming unemployed
or getting divorced. For a recent summary of the theoretical relevance of these factors see
Alesina and Giuliano (2011).

4.1. Data and variables

I use data from the British Household Panel Survey, conducted between 1991 and 2008, which
provides measurements ofmy dependent variable on 7 occasions. I use the original (‘Essex’)
sample and create a balanced panel using individuals who provide responses to all seven
waves.21 _is provides me with data on 1958 individuals observed over a span of 17 years.

18But see recent research based on experimental evidence, e.g. Margalit (2011), Neustadt (2010).
19_is should not be read as a critique of this particular paper, given that the authors’ interest lies in a comparative
analysis (where panel data is unavailable).

20Its correlation with a latent preferencemeasure of several redistribution items (following themethodology of
Stegmueller 2011) using data for the UK from the International Social Survey Programme is 0.64.

21Items are available in waves A, C, E, G, J, N, and Q. Estimating the model using multiple imputation for
missing values provides results that are substantively similar to the ones presented here, as does an analysis
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Responses to the item “It is the government’s responsibility to provide a job for everyone who
wants one” are captured using the usual 5 point strongly agree – strongly disagree scale.22

Since both extreme ends of the response categories are rather sparsely populated, I combine
categories to yield a clear three-category response vector, which indicates if preferred levels
government activity should stay the same (0), or should be increased (1) or decreased (−1).23
_us, the relationship between observed responses and the latent preference variable is given
by:

yit =
⎧⎪⎪⎨⎪⎪⎩

−1 if zit < τ1 = 0
0 if τ1 = 0 < zit < τ2
1 if τ2 < zit .

Income is captured by both household income, and the share of a respondent’s income
of total household income. I measure income as real equivalent household income, i.e., it is
de�ated using the consumer price index with base year 2005 and adjusted for household size
using themodiûedOECD equivalence scale (Hagenaars et al. 1994). I decompose income into
a time varying and a time constant part. _us, I estimate both a level and a shock eòect, which
mirrors the theoretical idea of permanent and transient income components (Friedman 1957).
More precisely, observed incomewit is decomposed aswit = w̄i +(wit − w̄i)with appropriately
speciûed regression weights for both terms. Household wealth is captured by the estimated
value of a respondent’s house. Deûnitions and descriptive statistics of all other independent
variables used in the analysis can be found in Table 1. Following Gelman (2008), in all models
estimated below I centered and scaled all continuous variables by dividing by two standard
deviations (which makes them roughly comparable to binary covariates).

4.2. Results

First, I describe results obtained from estimating themodel described in section 2 assuming
normally distributed random eòects. I use a 66% subsample of individuals from the full
sample. Results are obtained by MCMC sampling using two chains run for 500,000 iterations
thinned by a factor of 25. 200,000 previous iterations are discarded as burn-in. _emodel is
implemented using JAGS (version 3.1.0) with a truncation threshold of 20 (see the discussion
of the Truncated Dirichlet Process in appendix B).24 Diagnostics suggested by Brooks and
Roberts (1998) and Gelman and Rubin (1992) do not show signs of absence of ‘convergence’.25

which uses an unbalanced panel of respondents who participated in at least three waves.
22Categories are labeled strongly agree; agree; neither agree nor disagree; disagree; strongly disagree.
23Note that in single index models, such as this one, consistency of the estimates is not hampered by combining
categories. See Franses and Cramer (2010) for a further discussion on combining categories in ordered
responsemodels. Furthermore, this dependent variable clearly represents a situation where linear models
are not appropriate.

24A second run with a truncation value of 40 yields a maximum posterior sampled value for K of 17, which
indicates that a truncation level of T = 20 was appropriate (see [online] appendix B).

25_e posterior samples converge early, but I ran the sampler for longer, providing more draws for the thresholds
in order to avoid non-convergence in this part of themodel (cf. Gill 2008b). I conducted an “insurance run”
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Table 1:Descriptive statistics of independent variables

Name Description mean sd

Income Equivalent household income (in 10,000 £)
Permanent Permanent income component 4.590 2.390
Transitory Transitory income component 0.000 2.558

Income share R’s share of total HH income 0.532 0.300
House value Estimated house value (in 100,000 £) 1.181 1.397
Owner House owned outright or with mortgage 0.819 0.385
Unemployed Unemployed 0.033 0.178
Union member Union member 0.231 0.421
Divorced Divorced 0.059 0.235
HH size Size ofHousehold 3.202 1.272
N kids Number of kids in HH 0.906 1.084
Female Gender: female 0.511 0.500
Age Age in years 3.963 0.960
Nonwhite† Ethnic group non-white 0.032 0.175
Educationb,†

Degree University degree 0.199 0.399
A-levels A level or higher national diploma 0.193 0.394
O-levels O level or GCSE 0.411 0.492

London† R grew up in greater London area 0.100 0.300
Parents’ jobsc,† Parents’ job status

unskilled Blue collar, unskilled jobs 0.163 0.369
skilled Blue collar, skilled jobs 0.223 0.416
white-collar White collar 0.145 0.352
self-employed Self-employed 0.144 0.351

N rows 13706
N individuals 1958
† Variables are time constant
a Equivalized using OECD scale; de�ated using consumer price index, 2005 prices
b Reference category: no or primary education
c Reference category: Managers, Salariat; dominance coding
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Resulting estimates are shown in Table 2, where I provide posterior means and standard
deviations as well as 95% highest posterior density regions. Concentrating on central dynamic
parameters, I ûnd a signiûcant amount of preference persistence: ϕ is estimated as 0.23 with a
small posterior standard deviation. An estimated random eòect variance, σ 2

ξ , of 0.83±0.09
underscores the importance of controlling for unobserved individual heterogeneity. _e
proportion of the total variance that is due to unobserved individual factors, ρ, is estimated as
45±3%. _us, almost half of the diòerence in preferences between individuals is due to unob-
served factors such as ability or motivation (which remains hidden in cross-sectional studies).
Clearly,more research is needed to capture such unobserved individual characteristics.

As described in section 2, a speciûcation test for the independence of initial conditions and
unobserved individual eòects is obtained by testing if λ is equal to zero. _is is clearly rejected
by an estimate of 1.19 and a HPD region far away from zero. In other words, initial conditions
should bemodeled as endogenous to individual (observed an unobserved) characteristics.
Relevant covariates in the initial conditions equation are age, income, and notably education,
aswell as pre-sample information on parental background. For example, individualswho grew
up in a working class household already have substantively higher preferences for government
intervention at the start of the panel.

(Gill 2008b: 173): running the sampler for twice as many iterations. Estimates for all key model parameters
are virtually identical; with the largest diòerence being 0.0019. All code and diagnostics are available in the
author’s dataverse.
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In a dynamic panel model a central quantity of interest are long-run or steady-state
relationships between z and x taking preference persistence into account. Since I ûxed the
scale of the error variance to 1, steady-state eòects are calculated as β/(1 − ϕ). Using 5000
draws from the relevant parameters’ posterior distributions, I calculate posterior means and
standard deviations of steady-state eòects, displayed in Table 3. For easier interpretation, I
provide them both in the metric of the latent dependent variable z, and calculated as ûrst
diòerences in predicted probabilities of preferring more government intervention resulting
from a unit-change in a covariate. For discrete variables this re�ects a change from 0 to 1; for
continuous variables this represents a change of 2 standard deviations (cf. Gelman 2008).

Long-run estimates of wealth captured by permanent income and house value show
a strong and negative relationship with preferences for government intervention. All else
equal, a unit-change of permanent income reduces an individual’s probability to opt for more
government intervention by 17±3 percentage points. It is noteworthy that income shocks
have little eòect on preferences and are statistically indistinguishable from zero. I ûnd the
same for the estimated long-run eòect of becoming unemployed, which is large but has a
posterior density that includes zero. _is also holds for its parameter estimates displayed in
Table 2. Excluding all income eòects from themodel does not change this ûnding. _is points
to the relevance of including preference persistence and (especially) unobserved individual
heterogeneity in studies of individual preferences. It is this speciûcation of unobserved
heterogeneity which I turn to next.

4.3. Robust random eòects results

To check the robustness ofmy random eòects speciûcation, I re-estimatedmymodel using
the strategies outlined in section 3. Amodel with t-distributed random eòects with 4 degrees
of freedom produces a lower estimate of the random eòects variance, σ 2

ξ , of 0.77 with a 95%
HPD region ranging from 0.68 to 0.86. However, all other model parameters, including the
preference persistence parameter ϕ, are estimated at virtually the same values (at 2 sf.). When
using a more �exible density estimate of the random eòects distribution using a Dirichlet
process prior,more diòerences emerge.26

Figure 2 plots a kernel density estimate of the distribution of random eòect estimates (more
precisely their posterior expectation) from the Dirichlet process hierarchical model. Clearly
the distribution of random eòects diòers from the traditionally made normal assumption,
being slightly skewed andmore peaked. However, there is no clear evidence ofmulti-modality
or the existence of extreme random eòects in the tails of the distribution. _is suggest that
central model parameters might not be too strongly aòected by diòerences in random eòect
estimates.

To illustrate diòerences in parameter estimates that emerge when using diòerent random

26A full table of parameter estimates for the DP prior model is given in appendix E.
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Table 3: Steady-state eòects. Calculated on the scale of
the latent variable z and as predicted probability of re-
sponding in the highest category. Posterior means and
standard deviations.

z-metric P(yi = 1)

Mean SD Mean SD

Permanent income −0.521 0.093 −0.172 0.031
Transitory income −0.076 0.050 −0.025 0.016
R’s Income share −0.146 0.066 −0.049 0.022
House value −0.149 0.068 −0.049 0.022
House owner −0.034 0.060 −0.014 0.026
Household size 0.110 0.103 0.036 0.034
N kids in HH −0.027 0.085 −0.009 0.028
Union member 0.192 0.064 0.065 0.022
Age −0.406 0.074 −0.134 0.024
Female 0.304 0.083 0.100 0.027
Divorced 0.074 0.111 0.027 0.039
Unemployed 0.178 0.131 0.064 0.046
Non-white 0.785 0.221 0.294 0.085
Degree −0.866 0.138 −0.233 0.030
A-levels −0.601 0.134 −0.174 0.034
O-levels −0.416 0.111 −0.134 0.035

Note: Calculated using 5000 simulated values. Predicted probabili-
ties represent unit-change in variable holding all else constant.
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Figure 2:Distribution of random eòects using a Dirichlet process prior. Density estimate of
posterior means of random eòects ξi evaluated over grid of 200 points. Normal distribution (-
- -) shown for comparison.
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Figure 3: Consequences of diòerent random eòect prior speciûcations. Posterior distributions
of selected parameters obtained using a normal distribution; a t distribution with 4 df.; and
mixture of Dirichlet processes as prior.

20



Table 4: Steady state estimates from Dirichlet random eòects model. Panel (A) shows esti-
mated steady state eòects. Panel (B) shows diòerence to normal random eòects model. Pos-
terior means and standard deviations.

(A) Estimates (B) Diòerence to normal RE

z-metric P(yi = 1) z-metric P(yi = 1)

Permanent inc. −0.516 0.088 −0.187 0.031 0.005 0.130† −0.015 0.043†

Transitory inc. −0.081 0.051 −0.030 0.019 −0.006 0.071† −0.004 0.025†

Income share −0.137 0.065 −0.050 0.024 0.007 0.091† −0.002 0.033†

House value −0.145 0.068 −0.053 0.025 0.004 0.097† −0.003 0.033†

House owner −0.025 0.062 −0.013 0.029 0.007 0.086† 0.002 0.039†

Household size 0.142 0.105 0.052 0.038 0.034 0.147† 0.016 0.051†

N kids in HH −0.041 0.087 −0.015 0.031 −0.014 0.120† −0.006 0.042†

Union member 0.193 0.063 0.072 0.024 0.002 0.089† 0.007 0.033†

Age −0.440 0.075 −0.160 0.028 −0.033 0.105† −0.026 0.037†

Female 0.359 0.086 0.131 0.031 0.054 0.119† 0.031 0.039†

Divorced 0.077 0.112 0.028 0.042 0.002 0.157† 0.002 0.057†

Unemployed 0.181 0.129 0.069 0.050 0.000 0.180† 0.004 0.068†

Non-white 0.635 0.224 0.245 0.084 −0.145 0.315† −0.051 0.119†

Degree −0.844 0.134 −0.264 0.037 0.017 0.196† −0.031 0.045†

A-levels −0.614 0.134 −0.202 0.040 −0.016 0.189† −0.029 0.051†

O-levels −0.422 0.109 −0.152 0.038 −0.006 0.152† −0.018 0.051†

Note: Calculated using 5000 simulated values. Predicted probabilities represent unit-change in vari-
able holding all else constant. Diòerences in panel (B) calculated as DP random eòects estimates
− normal random eòects estimates. Diòerence estimates whose 95% HPD interval includes zero
aremarked by †.

eòect prior speciûcations, I plot posterior distributions of some selected parameters in Figure 3.
It shows posterior distributions of the initial condition random eòects scale factor λ, preference
persistence ϕ, and estimates of age and being female obtained using normal, t, and DP
random eòects. Estimates of the scale factor and preference persistence are indistinguishable
between normal and t-distributed random eòects. However, they are larger under the DP
prior speciûcation, especially for preference persistence. Results for substantive covariates
also diòer when using a �exible DP prior speciûcation. My estimate for the in�uence of age
on preferences for government intervention becomes smaller, while the posterior distribution
of being female is clearly shi�ed to the right, indicating an even stronger eòect. Nonetheless,
themagnitude of these diòerences is limited and other covariate estimates are somewhat less
aòected than the ones shown here.

To assess if these diòerences change one’s substantive results, it is advisable to focus again
on steady state estimates calculated from themodel. In Table 4, panel (A), I provide steady
state eòects from the DP random eòects model. As before, I calculate them in themetric of
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the latent variable and as predicted probabilities of preferring more government involvement.
In panel (B) I calculate the diòerence to the steady state estimates based on normal random
eòects, shown in Table 3, andmark diòerence estimateswhose 95%HPD interval contains zero
by †. I ûnd that diòerences are especially marked for estimates of time-constants covariates.
_e diòerence between the estimated eòect of holding an advanced degree is almost three
percentage points, while the eòect of being non-white diòers by 5 percentage points. However,
when taking uncertainties ofmy estimates into account, these diòerences appear to not be
statistically relevant: in each and every case the 95% highest posterior density interval of the
diòerence contains zero. _us, in this particular application, one can conclude that substantive
results obtained with a ‘simple’ gaussian random eòects speciûcation are robust to violations
of the distributional assumption of unobserved individual heterogeneity.

5. CONCLUSION

Central aim of this paper is to present a modeling strategy for analyzing the dynamics of
individual preferences or attitudes using panel data. I employ the idea of an underlying latent
continuous variable,which generates observed categorical preferencemeasures. _e dynamics
of themodel are also speciûed on the level of the latent variable, since it should be one’s latent
past preference – not observed survey scores – providing feedback to current preferences. Fur-
thermore, I explicitly model initial conditions, following the approach suggested by Heckman
(1981a, b). I capture unobserved individual heterogeneity using random eòects and discuss pos-
sible shortcomings of the usual distributional assumptions. I employ a distinctively ‘Bayesian’
solution to this problem, which is to specify a prior over possible random eòect distributions,
in order to capture uncertainty about its true form. _is yields �exible nonparametric density
estimation of random eòects, which I use to assess the robustness ofmy ûndings.

Applying themodel to data on individuals’ preferences for government intervention over
a span of 17 years, clearly shows the necessity of employing a Hierarchical dynamic panel
modeling approach. First, I ûnd a signiûcant level of preference persistence. In other words,
individuals’ preferences are ‘sticky’, and covariate estimates will be biased when ignoring
this fact. Second, initial conditions matter. Individuals enter the panel study with prefer-
ences already shaped by pre-sample variables and observed and unobserved characteristics.
_ird, nearly half of the total variation in preferences is due to unobserved individual factors,
such as motivation or ability. Using both parametric and semi-parametric random eòects
speciûcations, I show that these ûndings are robust to distributional assumptions.

Existing political science research on individual preferences and attitudes using cross-
sectional data should be augmented into the time domain to explicitly study dynamic im-
plications of theories. Using panel data and an appropriate dynamic model provides the
tools to generate new insights into how individual preferences evolve over time, how they are
shaped by observed and unobserved individual characteristics, and how individuals adjust
their preferences in reaction to socio-economic shocks.
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APPENDICES

A. INITIAL OBSERVATIONS

To explicate the role of initial observations, rewrite the dynamicmodel

zit = ϕzit−1 + xitβ + ξi + єit , t = 1, . . . , T

in its explicit distributed lag representation by successive backward substitution (e.g., following
Harris et al. 2008: 251):

zit = ϕtzi0 +
t−1
∑
j=0

ϕ jxit− jβ +
1 − ϕt

1 − ϕ
ξi + ηit (23)

with ηit = ϕηit−1 + єit with ηi0 = 0.
_is makes obvious that each observation of zi can be expressed as the sum of several

factors. _e ûrst part of equation (23), ϕtzi0 depends on the initial observation of the panel,
while the second part depends on current and past covariate values. _e third part 1−ϕt

1−ϕ ξi
indicates proportional dependence on unobserved individual speciûc eòects.

Direct estimation of (23) would require suõciently large T and that ϕt decays suõciently
rapidly with t. Alternatively, one can specify an empirical approximation of zi0 (Pudney 2008:
27). Heckman’s (1981b) approximation for zi0∣xit , ξi ,

zi0 = δ′wi + λξi + єi0, (24)

as given in themain text, is obtained by ûrst writing

zi0 = δ′wi + ηi (25)

where wi = (xi0, vi) is a vector of initial condition covariates comprised of covariate values
at sample entry xi0 and additional background information vi . ηi is an individual error
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component at the initial condition. Next, decompose ηi into an individual speciûc (time-
constant) random eòect and a stochastic disturbance at t = 0. Instead of introducing a second
individual random eòect,Heckman employs the orthogonal projection

ηi = λξi + єi0 (26)

which speciûes ηi as resulting from random disturbance єi0 and individual speciûc eòect ξi .
_e random disturbance term at the initial condition єi0 is now uncorrelatedwith ξi by design,
and assumed uncorrelated with other errors, i.e. Cov(єi0, єit) = 0, ∀t > 0. _e individual
speciûc random eòects ξi are allowed to have a diòerent scaling in the initial conditions
equations by including a scale factor λ. Substituting (26) into (25) yields the reduced form
equation (24) for initial observations used in themain text.

B. DIRICHLET PROCESS

In this appendix I describe the Dirichlet process in more detail.27 A Dirichlet process random
eòects model can be understood as a (countably) inûnitemixture of points. _us I start from
specifying a ûnitemixture of points model for random eòects and set up the Dirichlet process
model from there by letting the number of points K →∞.

Aûnite nonparametric random eòects prior Start by specifying some �exible distribution
G for the random eòects:

ξi ∼ G(ϕ) (27)

with hyperparameters ϕ. G can be approximated arbitrarily close by specifying a ûnite sum of
K point masses and weights πk,

G(π, ζ) =
K
∑
k=1

πkδζk (28)

with∑K
k=1 πk = 1 and where δζk is the Dirac delta function yielding a point mass at ζk. Here,

ϕ = (ζ , π) and random eòects ξi are sampled from this distribution and are equal to one of
the ζk.

In a Bayesian setup (e.g. Lo 1984), one has to specify priors for the weights, such as:

ζk ∼ G0 (29)
π ∼ Dirichlet(α) (30)

where each of K discrete locations ζk are sampled from some base distribution G0. _e prior

27_is section builds on the excellent presentation in Navarro et al. (2006).
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over weights is a Dirichlet distribution of dimension K with parameters α = (α1, . . . , αK):

p(π∣α) = L(α)−1 (
K
∏
k=1

παk−1
k ) 1(π) (31)

where 1(π) is an indicator function equal to one if weights sum to one and zero otherwise. L
is a normalizing function given by:28

L(α) = ∫ (
K
∏
k=1

παk−1
k ) 1(π) dπ = ∏

K
k=1 Γ(αk)

Γ (∑K
k=1 αk)

(32)

_e Dirichlet prior for the weights π is taken to be symmetric, i.e. we use a parameter vector
of length K with (α/K , . . . , α/K), thus ensuring that the sum of the parameter vector will
always be α (e.g. Ishwaran and Zarepour 2002).

Moving to the inûnite case Having speciûed a prior for the ûnite case, we elicit a prior
speciûcation for the inûnite point mixture case by letting K →∞.

First, to make the clustering structure of themodel explicit, deûnemembership indicators
si , which indicate to which subcluster the ith random eòect is assigned. For a random eòect
of individual i the probability of belonging to subcluster k is given by the weight πk , and thus

p(si = k∣π) = πk . (33)

Using membership indicators, the prior in (29)–(30) becomes:

ζk ∼ G0 (34)
π ∼ Dirichlet(α/K) (35)
si ∼ Multinomial(π) (36)

wheremembership indicators are sampled from amultinomial with size one.
Second, we integrate out the subcluster weights π to get the conditional subcluster

assignment probability when having already observed N − 1 random eòects assignments
S[i] = {s1, . . . , sN−1}:

p(si = k∣S[i], α,K) = ∫ p(si = k∣π)p(π∣S[i], α,K)dπ (37)

To solve the integral, note that the ûrst term of the integrand is πk (cf. equation (33)). _e

28See, e.g. Gill (2008a: 180). Γ is the gamma function, which is a generalization of the factorial function: for a
non-negative integer n, Γ(n) = (n − 1)!.
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second term is the posterior probability

p(π∣S[i], α,K)∝ p(S[i]∣π)p(π∣α,K), (38)

i.e. the product of amultinomial and Dirichlet distribution, which implies that the posterior
distribution is also a Dirichlet (i.e. conjugacy of the resulting posterior).

Denote by mk = #{ξ1 = ζk} the number of random eòects assigned to subcluster k, and
let m = (m1, . . . ,mK) be a ‘member size’ vector giving the number of individuals in each
subcluster. _e posterior probability p(π∣s/i , α,K) is distributed Dirichlet with parameter
vector s + α/K. _us

p(si = k∣s/i , α,K) (39)

= L(m + α/K)−1∫ πk (∏
l

πm l+α/K−1
l ) 1(π)dπ (40)

= L(m + α/K + 1(k))
L(m + α/K)

(41)

= mk + α/K
N − 1 + α

(42)

where 1(k) is an indicator vector (with length K) with a 1 at position k and zero otherwise.
Having integrated out the weights, consider now the limiting probability that random

eòect ξi gets assigned value(s) ζk of an existing subcluster k with mk ≥ 1:

p(si = k∣S[i], α) = lim
K→∞

(mk + α/K
N − 1 + α

) (43)

= mk

N − 1 + α
(44)

Conversely, consider the limit probability that ξi gets assigned values from a new subcluster.
Let K/i be the realized number of subclusters when N − 1 random eòects have already been
assigned. Denote by S the set of subclusters with mk = 0 (i.e. the K − K[i] empty subclusters).
_e assignment probability for the ith random eòect is then

p(si ∈ S ∣S[i], α) = lim
K→∞

(∑
l∈S

ml + α/K
N − 1 + α

) (45)

= α
N − 1 + α

lim
K→∞

(
K − K[i]

K
) (46)

= α
N − 1 + α

(47)

Integrating out subcluster assignment indicator variables si yields the prior distribution
for assigning a value to random eòect ξi given that all other random eòects ξ[i] have already
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been assigned. _is distribution is amixture of the base distribution G0 and the empirical
distribution of N − 1 previously assigned random eòect values:

ξi ∣ξ[i], α,G0 ∼
α

N − 1 + α
G0 +

K[i]

∑
k=1

mk

N − 1 + α
δζk . (48)

Drawing a sequence of random eòects assignments from (48) yields a Polya urn scheme
with parameters α and G0 (Blackwell andMacQueen 1973). Using this scheme allows us to
choose a prior for the random eòects distribution G. We require that themarginal prior over
parameters (ζ1, . . . , ζ∞) follows a Polya urn scheme. Blackwell andMacQueen (1973) show
that the Dirichlet process does, andwe can thus specify the Dirichlet process as nonparametric
random eòects prior:

ξi ∼ G (49)
G ∼ DP(α,G0) (50)

Dirichlet process _e Dirichlet process is a stochastic process (a distribution over function
spaces) whose sample paths (i.e. random functions draws) are probability measures with
probability 1 (Ferguson 1973, 1974). Intuitively, it is a distribution over distributions, where
each draw yields a Dirichlet distribution. More formally, let (Σ,B) be a (measurable) space,
and let G0 be a random probability measure over it, and let α be a positive real number.
A Dirichlet Process is a distribution G over (Σ,B) such that for every (ûnite measurable)
partition (B1, . . . , BN):

(G(B1), . . . ,G(BN)) ∼ Dirichlet(αG0(B1), . . . , αG0(BN)). (51)

G0 can be interpreted as mean of the process, since for any measurable B, E(G(B)) = G0(B).
_e ‘dispersion’, ‘strength’ or ‘prior mass’ parameter α can be understood as inverse variance,
since V(G(B)) = G0(B)/(α + 1), so that larger values of α imply a tighter concentration of
the DP around G0.

_e posterior process for a drawing G from the DP and a subsequent random eòect draw
ξ1 from G is a standard Dirichlet update (see Schervish 1995):

G∣ξ1 ∼ DP (αG0 + δξ1) . (52)

Iterating the updating yields

G∣ξ1, . . . , ξN ∼ DP (αG0 +
N
∑
i=1
δξ i) . (53)

To see the connection to the inûnitemixturemodel consider the predictive distribution for a
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new ξN+1 given previous random eòect realizations ξ, with G marginalized out. For any B ⊂ Σ
we again get the Polya/Blackwell MacQueen (1973) urn scheme (cf. equation 48):

E(G(B)∣ξ1, . . . , ξN) =
αG0(B) +∑N

i=1 δξ i(B)
α + N

(54)

→
∞
∑
k=1

πk δζk(B) (55)

with πk = limN→∞ mk/N , and where ζk represents one unique random eòect value, and
mk = #{ξi = ζk} in the sequence (ξ1, . . . , ξN). A countably inûnitemixture of the above form,
which fulûls the deûnition of the Dirichlet Process, can be constructed by the stick-breaking
random measure, as shown by Sethuraman (1994).

Stick breaking construction It is used to construct the inûnite number of weights in (55).
Let

νk ∼ Beta(1, α), k = 1, 2, . . . (56)

be an inûnite sequence of beta distributed random variables. Set π1 = ν1 and construct the
remaining πk via

πk = νk

k−1
∏
l=1

(1 − νl), k = 2, 3, . . . . (57)

Let ζk ∼ G0 and G = ∑∞
k=1 πkδ(ζk); then G ∼ DP(α,G0). _is constructive scheme implies

that, just as the ûnite case in (28)–(30), G has now a clear deûnition as a random measure,
since

∞
∑
k=1

πk = 1 wp 1. (58)

To see this note that

1 −
K
∑
k=1

= 1 − ν1 − ν2(1 − ν1) − ν3(1 − ν2)(1 − ν1) −⋯ (59)

= (1 − ν1)(1 − ν2 − ν3(1 − ν2) −⋯) (60)

=
K
∏
k=1

(1 − νk) (61)

→ 0 wp 1 as K →∞. (62)

Estimation via truncated Dirichlet process _e stick breaking construction suggests an
approximate sampling strategy for posterior DP inference. Choose a truncation value T for K,
and set νT = 1 to ensure that weights do sum to one. _en we have a ûnite representation of

33



the inûnitemixture of points:

G =
T
∑
k=1

πkδζk , (63)

where πk = 0 for k > T . More details are given by Ishwaran and James (2001) and and Ishwaran
and Zarepour (2002). _is approximation yields good approximations even with low values
for T , and is computationally tractable and can be implemented in available general purpose
Bayesian inference packages such as JAGS,WinBUGS or PyMC. Discussions of other,more
sophisticated sampling strategies (which require tailored code) are given in Escobar andWest
(1995),MacEachern andMüller (1998), Neal (2000), and Kyung et al. (2011).

In any ‘real-life’ political science application, one should check if the truncation threshold
T was chosen large enough. A straightforward way is to sample from a model where T is
set at twice the size, and investigate if the posterior samples of K – the sampled number of
subclusters – are larger for this model. Figure 4 shows a histogramof the posterior distribution
of K from just such a model run, where I set T = 40. It indicates that even with a higher
truncation thresholds, the Dirichlet process never created more than 20 subclusters (the
maximum sampled value of K is 17). _us, the truncation level used in themain part of the
paper is a good approximation.29

Posterior number of K
0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

Figure 4: Posterior number of subclusters sampled from TDP(α, G0, T = 40)

C. ELICITATION OF PARAMETERS OF Γ PRIOR FOR α

Kottas et al. (2005) derive an approximation of the mean and variance of the number of

29Furthermore, inspection of parameter estimates reveled no diòerences to amodel with T = 20.
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subclusters, which can be used to select semi-informative values for the Gamma prior of α.
_e expected number of subclusters given precision, α, and number of observations, N , is

E(k∣α,N) =
N
∑
i=1

α
α + i − 1

≈ α log(α + N
α

) (64)

with variance

Var (k∣α,N) =
N
∑
i=1

α(i − 1)
(α + i − 1)2 ≈ α [log(α + N

α
) − 1] . (65)

As a result ofmy Gamma prior speciûcation E(α) = a0/b0 and Var(α) = a0/b2
0. Some algebra

yields the a priori expectedmean and variance for the number of subclusters (cf. Kottas et al.
2005; Liu 1996: 916):

E(k) ≈ a0
b0

log(1 + nb0
a0

) (66)

Var(k) ≈ a0
b0

log(1 + nb0
a0

) − nb0
a0

+ [log(1 + nb0
a0

) − nb0
a0 + nb0

]
2 a0
b2
0

(67)

_is expressions can be evaluated numerically to obtain reasonable values for a0 and b0 given
ones prior expectations of themean number of subclusters.30

D. INVERSE-GAMMA VARIANCE PRIORS

As mentioned in subsection 2.3 there are good reasons to prefer more informative priors for
the random eòect variance. In this section, I describe the speciûcation (or ‘elicitation’) of two
sets of hyperprior values.

Usually one speciûes a prior for the inverse variance, or precision. _eGamma distribution
is a popular choice (e.g. Gelman et al. 2004: 579). With given a-priori values for the expected
mean m0 and variance v0 of the random eòect precision σ−2

ξ , hyperprior values for Γ(a0, b0)
are given by:31

a0 = m2
0/v0 (68)

b0 = v0/m0 (69)

Alternatively, when specifying a prior for the variance directly the inverse gamma distribution

30If researchers feel uncomfortable with choosing values based on expectations about K, they can either rely
on priors suggested in the literature such as Γ(1, 1) or Γ(2, 2), which prevent very small and large values
(Ishwaran and Zarepour 2000).

31I use the same notation for shape and scale of the Gamma distribution (a0 , b0) as in subsection 3.2 purely for
notational convenience.
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Figure 5:Distribution of variance prior precision under two Gamma prior speciûcations
(based on 10,000 samples from prior distribution).

can be used. Here hyperprior values for Γ−1(a0, b0) are given by:

a0 = (m2
0 + 2v0)/v0 (70)

b0 = m0(m2
0 + v0)/v0 (71)

A simple random eòects ordered probitmodelût using a laplace approximation to integrate
out the random eòects (ignoring the lagged dependent variable, and initial conditions) suggest
a variance of the individual eòects of ca. 1.392 or a precision of 0.7182. _us, settingm0 = 0.7182
I choose a two diòerently ‘tight’ v0 values: v0 = {1, 0.25}. _is leads to hyperprior values of
a0 = 0.5158, b0 = 1.3924, and a0 = 2.0632, b0 = 0.3481. _e resulting prior distributions are
illustrated in Figure 5 which plots 10,000 draws from the respective prior distributions.

Re-estimating my main model with these two more informative random eòects variance
prior choices leads to very similar estimated variances of 0.83 (sd=0.09) and 0.84 (sd=0.09),
respectively. Coeõcient estimates are virtually indistinguishable at two signiûcant ûgures.

E. DP RANDOM EFFECTS ESTIMATES

Table 5 shows estimated parameters of themodel with Dirichlet process random eòects. α is
the estimated dispersion parameter of the Dirichlet process; K represents the sampled value
of the number of clusters at each MCMC step.
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